REMARK ON A PAPER BY B. SINGH ON CERTAIN NUMERICAL CHARACTERS OF SINGULARITIES

M. Herrmann and U. Orbanz

Mathematisches Institut der Universität Köln, West Germany

Communicated by F. Oort Received 2 October 1980 Revised 16 February 1981

In various papers related to resolution of singularities, Hironaka used successfully two different numerical characters of the local ring of a singular point on an algebraic variety. These are the local Hilbert functions and the character v^* (see [1,2]). Hironaka studied – as a key step to the goal of desingularization in characteristic zero – their behaviour under permissible monoidal transformations and proved that stability of the Hilbert functions is equivalent to stability of the v^* ([2]). This theorem was the only result relating the Hilbert function and v^* , until recently B. Singh [4] introduced in this journal the matrix v^{**} , which contains v^* as first row and which determines the Hilbert function (see Section 1 for definitions and remarks).

The main result of Singh states that under a permissible monoidal transformation with trivial residue field extension v^* is stable if and only if v^{**} is stable. The aim of this note is to show that Hironaka's paper [2] contains all tools to extend Singh's result to the case of an arbitrary residue field extension. So if v^* is stable under a permissible monoidal transformation an improvement of the singularity cannot be measured by v^{**} .

We would like to thank the referee for some helpful comments.

1.

We start by briefly recalling the definitions (see [4]). Let $A = \bigoplus_{n \ge 0} A_n$ be a graded algebra and assume that A_0 is a field. Let M be a finitely generated graded Amodule, x_1, \ldots, x_r homogeneous elements of M. Then x_1, \ldots, x_r is called a standard base for M, if

(a) x_1, \ldots, x_r is a minimal system of generators for M and

(b) $\deg(x_1) \leq \cdots \leq \deg(x_r)$.

The degrees $deg(x_j)$ are independent of the standard base. Therefore it makes sense to define

$$v_j(M) = \begin{cases} \deg(x_j) & \text{if } j \le r, \\ \infty & \text{if } j > r \end{cases}$$

and

$$v_*(M) = (v_1(M), v_2(M), \dots).$$

Now take a minimal free resolution

$$\rightarrow E_i \rightarrow E_{i-1} \rightarrow \cdots \rightarrow E_0 \rightarrow M \rightarrow 0$$

of M by finitely generated, free graded A-modules. Since this resolution is unique up to isomorphism, we may define

$$v_{ii}(M) = v_i(E_i), \quad i \ge 0, \ j \ge 1,$$

and we put

$$v_{**}(M) = (v_{ii}(M)).$$

Next we consider a local ring (R, M) and an ideal J in R. We use the notation $\operatorname{gr}_{M}(R)$ for the associated graded ring of R, $\operatorname{in}_{M}(f)$ for the initial form of an element $f \in R$ $(f \neq 0)$ and $\operatorname{gr}_{M}(J, R)$ for the ideal in $\operatorname{gr}_{M}(R)$ generated by $\{\operatorname{in}_{M}(f) | f \in J, f \neq 0\}$.

A set of elements $f_1, ..., f_r \in J$ will be called a standard base for J, if their initial forms $in_M(f_1), ..., in_M(f_r)$ are a standard base for $gr_M(J, R)$. Furthermore we define

$$v^*(J) = v_*(\operatorname{gr}_M(J, R))$$
 and $v^{**}(J) = v_{**}(\operatorname{gr}_M(J, R)).$

Finally, recall that the local Hilbert functions are given by

and

$$H_R^{(0)}(n) = 1_R (M^n / M^{n+1})$$

$$H_R^{(d)}(n) = \sum_{k=0}^n H_R^{(d-1)}(k) \quad \text{if } d \ge 1.$$

Then B. Singh proved:

Proposition 1 [4, Thm. 2.1]. If (R, M) is a regular ring of dimension e and J any ideal of R, then

$$H_{R/J}^{(d)}(n) = \binom{n+e-1+d}{e-1+d} - \sum_{i=0}^{\infty} (-1)^i \sum_{j=1}^{\infty} \binom{n-v^{(ij)}(J)+e-1+d}{e-1+d}.$$

From now on we fix a regular local ring (R, M), an ideal J in R and a prime ideal $P \supset J$ which is permissible for J.¹ (R', M') will denote a monoidal transformation of R with center P and J' the strict transform of J in R'. The residue fields of R and R' will be denoted by k and k' respectively. Then we can prove the following

¹ This means that R/P is regular and $grp(\vec{R})$ is flat over R/P, where $\vec{R} = R/J$ and $\vec{P} = P/J$.

Theorem. The following conditions are equivalent:

- (i) $H_{R'/J'}^{(\delta)}(n) = H_{R/J}^{(0)}(n)$ for all *n*, where $\delta = \text{tr.d.}_k k'$. (ii) $v^*(J') = v^*(J)$.
- (iii) $v^{**}(J') = v^{**}(J)$.

The implication (ii) \Rightarrow (iii) is the content of this note and will be proved in the next section. (iii) \Rightarrow (i) follows immediately from Proposition 1. Finally, (i) \Rightarrow (ii) is the easier part of Hironaka's proof of the equivalence of (i) and (ii) in [2]. The additional condition (iii) may be thought of as giving a different view of Hironaka's proof of (ii) \Rightarrow (i).

2.

From now on we will always assume $v^*(J') = v^*(J)$. In order to prove (iii), we have to introduce some more notation and we will recall some results of [2]. First we choose a regular system of parameters $(x_0, x_1, ..., x_r, y_1, ..., y_s)$ of R such that

(a) $P = (x_0, x_1, ..., x_r)R$ and

(b) $PR' = x_0 R'$.

We put S = R'/MR'. This can be viewed as a localisation of the polynomial ring $k[t_1, ..., t_r]$, where t_i is the residue of $x_i/x_0 \mod MR'$.

Having fixed the regular system of parameters for R, we identify $gr_M(R)$ with the polynomial ring

$$k[X, Y] = k[X_0, X_1, \dots, X_r, Y_1, \dots, Y_s]$$

and $\operatorname{gr}_P(R) \otimes_R k$ with the subring $k[X] = k[X_0, X_1, \dots, X_r]$. We have a homomorphism

$$\alpha: k[X] \rightarrow S, \quad \alpha(X_0) = 1, \quad \alpha(X_i) = t_i, \quad i = 1, \dots, r_i$$

obtained by 'dehomogenizing'. Since we assume $v^*(J') = v^*(J)$, we are interested in elements $f \in J$ such that

$$v_{\mathcal{M}'}(f/x_0^d) = d$$
, where $d = v_{\mathcal{M}}(f)$.

A first step to obtain a standard base of J with this propety is to consider the graded subalgebra $U \subset k[X]$ whose term of degree d is

$$U_d = \{ \varphi \in k[X]_d \mid \alpha(\varphi) \in N^d \},\$$

where N is the maximal ideal of S. It can be shown that, if $\varphi \in U_d$ and $\varphi \neq 0$, then $\nu_N(\alpha(\varphi)) = d$. Most important for the results of [2] and hence for our proof is now the following description of U, which is given in [3]:

Proposition 2. After a permutation of $x_1, ..., x_r$ (if necessary) we have

$$U = k[\sigma_1, \ldots, \sigma_e],$$

where

$$\sigma_i = X_i^{q_i} + \sum_{j=i+1}^{r+1} c_{ij} X_j^{q_i}, \quad 1 \le i \le e, \quad X_{r+1} = X_0$$

and

$$l \leq q_1 \leq \cdots \leq q_e$$
.

Furthermore

$$q_i = \begin{cases} 1 & if \operatorname{char}(k) = 0, \\ power of p & if \operatorname{char}(k) = p > 0. \end{cases}$$

Corollary. $gr_M(R)$ is flat over U.

Proof. Let $B = k[\sigma_1, ..., \sigma_e, X_{e+1}, ..., X_r, X_0]$. Then $k[X_0, ..., X_r]$ is a free *B*-module with basis $\{X_1^{b_1} \cdots X_e^{b_e} | b_i < q_i\}$. Therefore dim $B = \dim k[X] = r + 1$ and *B* is a polynomial ring over *U*.

Proposition 3. There exists a standard base $f_1, ..., f_m$ of J with the following properties:

(a) If $d_i = v_M(f_i)$ and $g_i = f_i/x_0^{d_i}$, there exist $w_i \in M(g_1, ..., g_{i-1})R'$ such that $h_i = g_i - w_i$, i = 1, ..., m, is a standard base of J'.

(b) $\phi_i = in_M(f_i)$ is an element of U for $1 \le i \le m$.

(c) Let I be the ideal in $gr_N(S)$ generated by $in_N(\alpha(\phi_1)), ..., in_N(\alpha(\phi_m))$ and let $\beta: gr_{M'}(R') \rightarrow gr_N(S)$ be induced by the surjection $R' \rightarrow S$. Then

$$I = \beta(\operatorname{gr}_{\mathcal{M}'}(J', R'))$$

These facts follow from the considerations proving Lemmas 15, 18, and 20 of [2].

For the proof of the following three lemmas we will fix a standard base of J with (a) to (c) of Proposition 3.

Lemma 1. $v^{**}(J) = v_{**}(gr_M(J, R) \cap U)$.

Proof. By (b) of Proposition 3 we have

$$\operatorname{gr}_{\mathcal{M}}(J,R) = (\operatorname{gr}_{\mathcal{M}}(J,R) \cap U) \operatorname{gr}_{\mathcal{M}}(R),$$

and $gr_M(R)$ is flat over U, which proves the assertion.

Lemma 2. $v_{**}(gr_{\mathcal{M}}(J, R) \cap U) = v_{**}(I)$

154

Proof. Following Hironaka [2] we introduce $S_0 = k[t_{e+1}, ..., t_r]_{N_e}$

where

$$N'_0 = N \cap k[t_{e+1}, \dots, t_r], \qquad N_0 = N'_0 S_0.$$

By [2], Lemma 14, $S_0/N_0 = S/N$. Therefore there are $\beta_i \in S_0$, $1 \le i \le e$, such that the images of $z_i := t_i - \beta_i$, $1 \le i \le e$, form a regular system of parameters of S/N_0S , see [2, 14.1]. By Proposition 2 we have

$$\begin{aligned} \alpha(\cdot) &= t_i^{q_i} + \sum_{j=i+1}^r c_{ij} t_j^{q_i} + c_{i,r+1} \\ &= z_i^{q_i} + \sum_{j=i+1}^e c_{ij} z_j^{q_i} + \gamma_i, \quad \gamma_i \in S_0. \end{aligned}$$

Putting $\tau_i = in_N \alpha(\sigma_i)$ it follows that

$$\tau_i = Z_i^{q_i} + \sum_{j=i+1}^{e} c_{ij} Z_j^{q_i} + \eta_i, \quad \eta_i \in \operatorname{gr}_{N_0}(S_0),$$

where $\operatorname{gr}_N(S)$ is identified with $\operatorname{gr}_{N_0}(S_0)[Z_1, \ldots, Z_e]$. Defining $\alpha^* \colon U \to \operatorname{gr}_N(S)$ by $\alpha^*(\sigma_i) = \tau_i$, $\alpha^*(U)$ can be identified with the subring $k[\tau_1, \ldots, \tau_e]$ of $\operatorname{gr}_N(S)$. Therefore we conclude as in the corollary to Proposition 2 that α^* is flat. But

$$\alpha^*(\operatorname{gr}_{\mathcal{M}}(J,R)\cap U)\cdot\operatorname{gr}_N(S)=I.$$

This proves Lemma 2.

Lemma 3. $v_{**}(I) = v^{**}(J')$.

Proof. By definition we have $v^{**}(J') = v_{**}(\operatorname{gr}_{M'}(J', R'))$. Let $X'_0 = \operatorname{in}_{M'}(x_0)$, $Y'_j = \operatorname{in}_{M'}(y_j)$ in $\operatorname{gr}_{M'}(R')$ $(1 \le j \le s)$. Then

$$\operatorname{gr}_{\mathcal{N}}(S) = \operatorname{gr}_{\mathcal{M}'}(R')/(X'_0, Y'_1, \dots, Y'_s) \operatorname{gr}_{\mathcal{M}'}(R')$$

and $X'_0, Y'_1, ..., Y'_s$ is a regular sequence for the $gr_{M'}(R')$ -module

 $\operatorname{gr}_{M'}(R')/\operatorname{gr}_{M'}(J',R')$

[2, Lemma 23]. Now it follows from [4, Cor. (3.2)] that

$$v^{**}(J') = v_{**}(\beta(\operatorname{gr}_{\mathcal{M}'}(J', R'))),$$

where β is as in Proposition 3. Now the lemma follows from (c) of Proposition 3, and this also finishes the proof of our theorem.

References

- H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero I-II, Ann. of Math. 79 (1964) 109-326.
- [2] H. Hironaka, Certain numerical characters of singularíties, J. Math. Kyoto Univ. 10 (1970) 151-187.
- [3] H. Hironaka, Additive groups associated with points of a projective space, Ann. of Math. 92 (1970) 327-334.
- [4] B. Singh, Relations between certain numerical characters of singularities, J. Pure Appl. Algebra 16 (1980) 99-108.