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In various papers related to resolution of singularities, Hironaka used success- 
fully two different numerical characters of the local ring of a singular point on an 
algebraic variety. These are the local Hilbert functions and the character v* (see 
(1,2]). Hironaka studied - as a key step to the goal of desingularization in charac- 
teristic zero - their behaviour under permissible monoidal transformations and 
proved that stability of the Hilbert functions is equivalent to stability of the v* ([2]). 
This theorem was the only result relating the Hilbert function and v*, until recently 
B. Singh [4] introduced in this journal the matrix Y**, which contains v* as first row 
and which determines the Hilbert function (see Section 1 for definitions and 
remarks). 

The main result of Singh states that under a permissible monoidal transformation 
with trivial residue field extension v* is stable if and only if v** is stable. The aim of 
this note is to show that Hironaka’s paper [2] contains all tools to extend Singh’s 
result to the case of an arbitrary residue field extension. So if v* is stable under a 
permissible monoidal transformation an improvement of the singularity cannot be 
measured by v**. 

We would like to thank the referee for some helpful comments. 

1. 

We start by briefly recalling the definitions (see [4]). Let A = @,,,,, A, be a graded 
algebra and assume that A0 is a field. Let M be a finitely generated graded A- 
module, xl, . . . . X, homogeneous elements of M. Then x1, . . . . X, is called a standard 
base for A4, if 

(a) xl. . . . . X, is a minimal system of generators for M and 
(b) deg(x,)l.-- 5 deg(x,). 

0022-4049/82/0000-0000/102.75 0 1982 North-Holland 



152 M. Herrmann. CJ. Orban; 

The degrees deg(x,) are independent of the standard base. Therefore it makes sense 
to define 

Vj (M) = 
deg(x,) if j I T, 
co if j>r 

and 

v*(W=(v,(M), Vz(M), *a.). 

Now take a minimal free resolution 

-+E;-+Ei_,+... -‘E,,+M+O 

of M by finitely generated, free graded A-modules. Since this resolution is unique 
up to isomorphism, we may define 

Vij(M)=Vj(Ei), ir0, jr 1, 

and we put 

v**(M) = (Q(M)). 

Next we consider a local ring (R,M) and an ideal J in R. We use the notation 
grM(R) for the associated graded ring of R, in,(f) for the initial form of an element 
f ER (f#O) and grM(J, R) for the ideal in grM(R) generated by (inM(f) [~EJ, 

f+Q. 
A set of elements f,, . . . . f,~ J will be called a standard base for J, if their initial 

forms in&t>, . . . , inM(fr) are a standard base for grM(J, R). Furthermore we define 

v*(J) = v&rdJ, RN and v**(J) = v*&r,dJ, RN. 

Finally, recall that the local Hilbert functions are given by 

and 
H(O)(n) = 1R @P/M” + 1) R 

I-$‘)(n) = i I+‘-‘)(k) if dr 1. 
k=O 

Then B. Singh proved: 

Proposition 1 [4, Thm. 2.11. If (R, M) is a regular ring of dimension e and J any 
ideal of R, then 

Hk$ (n) = 
n+e-l+d 

> 
( 

n - &j)(J) + e - 1 + d 

e-l+d e-l+d >. 

From now on we fix a regular local ring (R, M), an ideal J in R and a prime ideal 
P> J which is permissible for J.’ (R’, M’) will denote a monoidal transformation of 
R with center P and J’ the strict transform of J in R’. The residue fields of R and R’ 
will be denoted by k and k’ respectively. Then we can prove the following 

1 This means that R/P is regular and grp(R) is flat over R/P, where R = R/J and P = P/J. 
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Theorem. The following conditions are equivalent: 
(i) H$j,,(n) =HiyJ(n) for aff n, where 6 = tr.d.k k’. 

(ii) v*(Y) = v*(J). 
(iii) v**(J) = v**(J). 

The implication (ii) => (iii) is the content of this note and will be proved in the next 
section. (iii) * (i) follows immediately from Proposition 1. Finally, (i) = (ii) is the 
easier part of Hironaka’s proof of the equivalence of (i) and (ii) in (21. The addi- 
tional condition (iii) may be thought of as giving a different view of Hironaka’s 
proof of (ii) = (i). 

2. 

From now on we will always assume v*(Y) = v*(J). In order to prove (iii), we 
have to introduce some more notation and we will recall some results of [2]. First we 
choose a regular system of parameters (xO,xI, . . . . xr, yI, . . . . JJ,) of R such that 

(a) P=(xo,xl, . . ..xl)R and 
(b) PR’=x,,R’. 

We put S= R’/MR’. This can be viewed as a localisation of the polynomial ring 

kIt, , . . . , tr], where ti is the residue of Xi/X0 mod MR’. 
Having fixed the regular system of parameters for R, we identify gr,M(R) with the 

polynomial ring 

k[X, Yl =k[Xo,X,, . . . . X,, Y,, . . . . &I 

and grp(R) 0, k with the subring k[X] = k[X,,X,, . . . . X,]. We have a homo- 
morphism 

(r:k[X]*S, o(Xo)=l, a(Xi)=ti, i=l,...,r, 

obtained by ‘dehomogenizing’. Since we assume v*(J) = v*(J), we are interested in 
elements f E J such that 

v,+,,(f/x~)=d, whered=vM(f). 

A first step to obtain a standard base of J with this propety is to consider the graded 
subalgebra I/C k[X] whose term of degree d is 

where N is the maximal ideal of S. It can be shown that, if a, E iJ, and rp + 0, then 
v,~(a(~,)) = d. Most important for the results of [2] and hence for our proof is now 
the following description of U, which is given in [J]: 
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Proposition 2. After a permutation of x,, . . . , x, (if necessary) we have 

U=k[a,, . . . . a,], 
where 

o;=Xpl+ ri’ CjjX,?$ Ilizze, Xr+,=Xo 
/=,+I 

and 

l1&7,1**.Iq,. 

Furthermore 

t 

1 
“= 

if char(k) = 0, 
power of p if char(k) =p >O. 

Corollary. gr,(R) is flat over U. 

Proof. Let B = k[al, . . . . oe, X,, ,, . . . . X,, X0]. Then k[XO, . . . , X,] is a free B-module 
with basis {Xf’ ++a X2 1 b;< qi}. Therefore dim B = dim k[X] = r + 1 and B is a poly- 
nomial ring over U. 

Proposition 3. There exists a standard base f,, . . . . f, of J with the following proper- 
ties: 

(a) If di= vM(A) and gi=fi/xgd there exist WiEM(gl, . . . . gi_l)R’suCh that hi= 
gi-W1* i=l,..., m, is a standard base of J’. 

(b) @i = in,,,(A) is an element of Ufor 1~ i I m. 

(c) Let I be the ideal in grN(S) generated by inN(a(@,)), . . . . inV((a(@,)) and let 
/3 : gr,,&R’) + grN (S) be induced by the surjection R’ 4 S. Then 

I = P(gr,&‘, R’)) 

These facts follow from the considerations proving Lemmas 15, 18, and 20 of [2]. 
For the proof of the following three lemmas we will fix a standard base of J with 

(a) to (c) of Proposition 3. 

Lemma 1. v**(J) = v,,(gr,,,(J, R) n U). 

Proof. By (b) of Proposition 3 we have 

gr,dJ, RI = (gr,dJ, RI n W gr.dR), 

and gr,W(R) is flat over CJ, which proves the assertion. 

Lemma 2. v**(gr.\,(J, R) fl U) = v**(I) 
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Proof. Following Hironaka [2] we introduce 

Se=k[l,+,, . . . . hl.v($ 
where 

Iv;=_Nn k[[,+,, . ..) tr], fV,=N&. 

By [2], Lemma 14, SO/NO=S/fV. Therefore there are PiESo, 1 sise, such that the 
images of Ei := f; -pi, 1 5 i 5 e, form a regular system of parameters of S/NeS, see 
[2, 14.11. By Proposition 2 we have 

Putting r; = inNa it follows that 

Ti=ZT+ i CijZ,4,+qf* 
,=r+l 

vi E n.pO)r 

where grN(S) is identified with grNO(So)[ZI, . . . . Z,]. Defining a* : U -+ gr,\(S) by 
(r*(~i) = r;, a*(U) can be identified with the subring k[rt, . . . . r,] of grN(S). There- 
fore we conclude as in the corollary to Proposition 2 that a* is flat. But 

a*(grM(J, R) fI U) . gr,y(S) = I. 

This proves Lemma 2. 

Lemma 3. v,,(Z) = v**(Y). 

Proof. By definition we have v**(J) = v,,(gr,MS(J: R’)). Let Xi= inW(xo), Yj’= 
inM,(yj) in grM(R’) (1 I~SS). Then 

gr&S)=gr.~(R’)/(X& Y;, . . . . Y,‘)gr,w(R’) 

and Xi, Y,‘, . . . . Yi is a regular sequence for the gr.MS(R’)-module 

grM(R’)/grM,(J’, R’) 

[2, Lemma 231. Now it follows from [4, Cor. (3.2)] that 

v**(J) = v**(P(gr.M,(J’, R’))), 

where j? is as in Proposition 3. Now the lemma follows from (c) of Proposition 3, 
and this also finishes the proof of our theorem. 
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